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COMPUTATIONAL-EXPERIMENTAL METHOD

FOR DETERMINING FRACTURE PARAMETERS

OF CRACKED STRUCTURES

UDC 539.375:629.7.02V. N. Maksimenko and A. V. Tyagnii

Computational-experimental methods are proposed to estimate the mode I and II stress intensity
factors, to determine the stresses acting at the location of a crack before its initiation, and to find the
coordinates of the crack tips. The initial data are displacement discontinuities measured at several
points at the crack edges. The methods are based on integral representations of the solution of the
elastic equilibrium problem for anisotropic plates with a curved cut. Numerical examples are given
to illustrate the efficiency of the methods.
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Methods based on experimental measurements of crack-opening displacements at several points are widely
used to estimate the stress intensity factors (SIFs) at crack tips and to determine the stress distribution at crack
locations before crack initiation [1–4]. These methods are applicable only to structures of isotropic materials and
simple geometry (straight cracks).

In the present paper, using integral representations of the solutions of crack problems, we propose a gen-
eral method for estimating the mode I and II SIFs at the tips of a curved crack and the stresses acting at the
crack site before its initiation and a method for determining the coordinates of crack tips in complex plate struc-
tures from metallic or composite (anisotropic) materials from displacement discontinuities (openings) determined
experimentally at several points at the crack edges.

1. Calculation of Stress Intensity Factors. We consider plane stresses in a plate from an elastic
rectilinearly anisotropic (in particular case, isotropic) material with an internal through-thickness or edge crack L
loaded by arbitrary external forces (P1, P2,. . . , Pj) (Fig. 1). The plate can be reinforced by stiffeners attached by
means of rivets and/or glue transmitting shear forces. We assume that the crack edges are traction-free and do not
interact with each other. Given the displacement discontinuity along the crack G(t) = (u+ − u−) + i(v+ − v−) =
g1(t) + ig2(t), it is required to determine the SIF.

According to [5], the stresses and displacements (except for rigid-body displacements) at an arbitrary point
z = x+ iy in the plate are expressed in terms of the analytic functions Φν(zν) and ϕν(zν) (ν = 1, 2):

(σx, τxy, σy) = 2 Re
{ 2∑

ν=1

(µ2
ν ,−µν , 1)Φν(zν)

}
,

(u, v) = 2 Re
{ 2∑

ν=1

(pν , qν)ϕν(zν)
}
,

dϕν(zν)
dzν

= Φν(zν). (1.1)

Here zν = x+ µνy, µν are roots of the corresponding characteristic equation with positive imaginary parts and pν

and qν are the constants of the plate material.
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Following [6], we write the functions Φν(zν) as

Φν(zν) = Φν0(zν) + Φν1(zν); (1.2)

Φν1(zν) =
1

2πi

∫
L

ων(τ) dτν
τν − zν

, ω2(t) = −a(t)ω1(t)− b(t)ω1(t), (1.3)

where

a(t) =
µ1 − µ̄2

µ2 − µ̄2

M1(t)
M2(t)

; b(t) =
µ̄1 − µ̄2

µ2 − µ̄2

M1(t)
M2(t)

; Mν(t) = µν cosψ − sinψ; t, τ ∈ L.

Here the functions Φν0(zν) define the principal stress state in the uncracked plate; the functions Φν1(zν) describe
the disturbed stress state due to the presence of the crack L; ψ(t) is the angle between the Ox axis and the
normal n(t) to the point t = xt + iyt at the left edge of the crack (Fig. 1); ων(t) are functions that have singularities
of the square-root type at the internal tips of the crack L (i.e., tips that do not reach the plate edge or hole) [7],
τ = xτ + iyτ , and τν = xτ + µνyτ .

Using relations (1.1)–(1.3), we write the displacement discontinuity G(t) in the form

G(t) =
2∑

ν=1

{
(pν + iqν)

t∫
R

ων(τ) dτν + (p̄ν + iq̄ν)

t∫
R

ων(τ) dτ̄ν
}
.

Differentiating this relation with respect to the crack length s, we obtain the expressions of ω1(t) in terms of the
derivatives of g1 and g2:

ω1(t) =
W (t)[A(t)− a(t)]−W (t) [B(t)− b(t)]

|A(t)− a(t)|2 − |B(t)− b(t)|2
, (1.4)

where

W (t) =
p̄2 dg2/ds− q̄2 dg1/ds

(p̄2q2 − p2q̄2)M2(t)
; A(t) =

p̄2q1 − p1q̄2
p̄2q2 − p2q̄2

M1(t)
M2(t)

; B(t) =
p̄2q̄1 − p̄1q̄2
p̄2q2 − p2q̄2

M1(t)
M2(t)

.

We consider the parametric equation of the contour L: t = t(α) and τ = t(β), where −1 6 α 6 1,
−1 6 β 6 1, Q = t(−1), and R = t(+1) for the internal crack and 0 6 α 6 1, 0 6 β 6 1, Q = t(0), and R = t(+1)
for the edge crack. In this case, the function ω1(t) can be written as ω1(t) = ω1[t(α)] = χ(α)/(1 − α2)1/2. Here
χ(α) is a function of class H in the neighborhood of the point α = +1 for the edge crack [7].

For the stresses in the neighborhood of the crack tips c = t(∓1) [for an edge crack, c = t(+1)], using the
results of [6], we obtain the asymptotic formulas
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lim
r→0

√
2r(σx, τxy, σy) = Re

{√
± ds

dα

∣∣∣
α=∓1

2∑
ν=1

(µ2
ν ,−µν , 1)Cν(ϑ)

}
,

Cν(ϑ) = Λν

√
Mν(c)/(cosϑ+ µν sinϑ), Λ1 = χ(∓1),

Λ2 = −a(c)Λ1 − b(c)Λ̄1, s = s(α), r = |z − c|, ϑ = Arg |z − c|

and the mode I and II SIFs, denoted by K1 and K2, respectively [8].
2. Determining Stresses at the Crack Location. For the cracked plate considered, we write the

potentials Φν(zν) as

Φν(zν) =
2∑

j=0

Φ∗νj(zν). (2.1)

Here Φ∗ν1(zν) = Φν1(zν) and the potentials Φ∗ν(zν) = Φ∗ν1(zν)+Φ∗ν2(zν) satisfy the following condition: the external
loads applied to the body are nonzero only at the edges of the crack L. By virtue of the superposition principle,
the potentials Φ∗ν0(zν) define the stresses in the intact plate, including the crack location.

The boundary conditions on L have the following form [6]:

a(t)Φ±1 (t1) + b(t)Φ±1 (t1) + Φ±2 (t2) = 0, tν = xt + µνyt, ν = 1, 2. (2.2)

Using the properties of the potentials Φ∗ν0(zν), from (1.3), (2.1), and (2.2) we obtain

X∗n(t) + µ̄2Y
∗
n (t) = (µ̄2 − µ2)M2(t)[a(t)Φ∗1(t1) + b(t)Φ∗1(t1) + Φ∗2(t2)], (2.3)

where X∗n(t) ds and Y ∗n (t) ds are the components of the forces acting on the elementary arc ds of the contour L of
the uncracked plate.

For three particular cases of the problem formulated above (an infinite plate with a crack, a half-plane with
a crack, and an infinite plate with an elliptic hole), the functions Φ∗ν(zν) can be written explicitly.

For an infinite plate with a crack L, we find that Φ∗ν2(zν) = 0. For a straight crack L = {|x| < a, y = const},
using (1.3), we obtain the following expression for the stresses σ∗y and τ∗xy that acted at the crack location before
its initiation:

τ∗xy(x) + µ̄2σ
∗
y(x) =

µ̄2 − µ̄1

πi

a∫
−a

ω1(τ) dτ
τ − x

.

For an internal or edge crack L located near the edge of a half-plane D = {x > 0}, the functions Φ∗ν2(zν)
should be written as follows [6]:

Φ∗ν2(zν) =
1

2πi

∫
L

{ lνsνω1(τ) dτ̄1
sνzν − τ̄1

+
nνmνω2(τ) dτ̄2
mνzν − τ̄2

}
, (2.4)

where

lν =
µ3−ν − µ̄1

µν − µ3−ν
; nν =

µ3−ν − µ̄2

µν − µ3−ν
; sν =

µ̄1

µν
; mν =

µ̄2

µν
(ν = 1, 2).

If a crack L is located near an elliptic hole Ω = {(x/a)2 + (y/b)2 = 1} in an infinite plate or reaches the hole
edge, the functions Φ∗ν(zν) are given by [9]

Φ∗ν(zν) =
dζν/dzν

2πi

∫
L

{ων(τ) dτν
ζν − ην

+
lνω1(τ) dτ̄1
ζν(ζν η̄1 − 1)

+
nνω2(τ) dτ̄2
ζν(ζν η̄2 − 1)

}
, (2.5)

where

ζν = ζν(zν) = (zν +
√
z2
ν − (a2 + µ2

νb
2) )/(a− iµνb); ην = ζν(τν) (ν = 1, 2).

The potentials Φ∗ν(zν) defined by (2.4) and (2.5) automatically satisfy zero boundary conditions for the
stresses at the edge of the half-plane or elliptic hole and at infinity.
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3. Numerical Algorithm. Let the displacements discontinuities of the crack edges g1p = (u+ − u−)p

and g2p = (v+ − v−)p be specified at N1 and N2 arbitrary points t1p = t(α1p) and t2p = t(α2p), respectively
(p = 1, . . . , Nj and j = 1, 2). Taking into account the behavior of the function ω1(t) and using relations (1.4), we
approximate the displacement-discontinuity function G(t) in the form of a series in the Chebyshev functions of the
second kind Uk(α) = sin (k arccosα) [10]

G(t) = G[t(α)] =
M1∑
k=1

b1kUk(α) + i

M2∑
k=1

b2kUk(α). (3.1)

Here b1k (k = 1, . . . ,M1) and b2k (k = 1, . . . ,M2) are unknown constants, which can be found by the least square
method [10]. Minimization of the functional

S =
2∑

j=1

Sj , Sj = Sj(Mj) =
Nj∑
p=1

[ Mj∑
k=1

bjkUk(αjp)− gjp

]2

(3.2)

leads to the following two systems of linear algebraic equations for the coefficients of series (3.1):

∂S

∂bjl
= 2

Nj∑
p=1

[ Mj∑
k=1

bjkUk(αjp)− gjp

]
Ul(αjp) = 0 (l = 1, . . . ,Mj ; j = 1, 2). (3.3)

The optimal values of M1 and M2 for a finite number of points N1 and N2, respectively, can be evaluated
with confidence level q using the condition that the criterion

J(Mj) =
Sj(Mj)

1−
√
{Mj [ln (Nj/Mj) + 1]− ln (1− q)}/Nj

(j = 1, 2)

reaches the minimum positive value [11]. Here Sj(Mj) are calculated by formula (3.2) for the coefficients bjk

determined from (3.3).
The derivatives of the displacement discontinuities dgj/ds in (1.4) are expressed in terms of the Chebyshev

functions of the first kind: Tk(α) = cos (k arccosα) [10]

dgj

ds
=
dgj

dα

dα

ds
= − 1√

1− α2

Mj∑
k=1

kbjkTk(α)
( ds
dα

)−1

(j = 1, 2).

To determine the forces (2.3) with allowance for (1.3), (2.1), (2.4), and (2.5), one can calculate the integrals
at the nodal points αm using the quadrature formulas for singular and regular integrals [12]

1∫
−1

V1(β) dβ√
1− β2 (β − α)

=
π

n

n∑
k=1

V1(βk)
βk − αm

,

1∫
−1

V2(α, β) dβ√
1− β2

=
π

n

n∑
k=1

V2(α, βk), (3.4)

βk = cos ((2k − 1)π/(2n)), k = 1, . . . , n; αm = cos (πm/2), m = 1, . . . , n− 1.

For edge cracks, the integration interval (0, 1) is replaced by the interval (−1, 1) provided that V1(β) = 0
and V2(α, β) = 0 for β < 0 and formulas (3.4) for even n are then used.

4. Determining the Crack Location. Let an internal straight crack be located along the Ox axis. We
assume that the coordinates of the left and right tips of the crack (denoted by A and B, respectively) are unknown
(for example, they have changed as a result of crack growth). Given the values of the displacement discontinuities
g2 = v+ − v− at several points, it is required to determine the coordinates of A and B.

In this case, the approximation (3.1) becomes

G(x) = ig2(x) = i

M2∑
k=1

b2k sin
(
k arccos

2x−B −A

B −A

)
. (4.1)

To minimize the quantity S = S2 in (3.2) with respect to the unknowns b2k, B, and A, we have a system of nonlinear
algebraic equations:

∂S2

∂b2k
= 0 (k = 1, . . . ,M2),

∂S2

∂B
= 0,

∂S2

∂A
= 0. (4.2)

To find the coordinate B of an edge crack L = {0 < x < B, y = const}, one can use system (4.2) eliminating
the last equation and setting A = −B in (4.1).
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5. Numerical Experiments. To illustrate the efficiency of the methods proposed, we consider the problems
whose geometries and loading cases are shown in Fig. 2. Calculations were performed for an isotropic material mod-
eled by an orthotropic material [5] with the following parameters: Ex = Ey = E, νxy = νyx = 0.33, and Gxy = Gyx

= 0.999E/[2(1 + νxy)] (Ex and Ey are Young’s moduli along the principal Ox and Oy directions, respectively, Gxy

and Gyx are the shear moduli, and νxy and νyx are Poisson’s ratios). The geometrical parameters of the reinforced
plate (Fig. 2f) are as follows: thickness of the isotropic plate 0.01a, cross-sectional area of the reinforcing elements
0.002a2, elastic modulus of the elements E, glue thickness 0.001a, shear modulus of the glue 0.01E, splice thick-
ness 0.1a [the splice is partly disrupted near the crack (delamination)], rivet diameter 0.04a (the rivets are located
with a step of 0.5a).

The numerical experiment was performed in two stages. In the first stage, the values of the displacement
discontinuities and stress intensity factors K0

1,2 were calculated for all problems in question using the integral-
equation method [6, 9, 13] or the analytical solutions of [5, 8]. For the problems shown in Fig. 2b, c, and e, the
stresses σ∗0y (x) and τ∗0xy(x) at the crack location were also calculated. The error of the numerical solutions obtained
by the integral-equation method was smaller than 0.1%. The displacement discontinuities were determined at one
to seven points αjp = [(2p − 1)/Nj ] − 1 (for internal cracks) or αjp = (2p − 1)/(2Nj) (for edge cracks) located
uniformly along the crack, where p = 1, . . . , Nj (Nj = 1, . . . , 5) and Mj = Nj (j = 1, 2). In the second stage,
the displacement discontinuities obtained were used as initial data to calculate the SIF K1,2, stresses at the crack
location σ∗y(x) and τ∗xy(x), and the crack-tip coordinates

Table 1 gives the relative errors for the mode I and II SIFs, (N = N1 = N2)

δ1,2(±a) = {[K1,2(±a)−K0
1,2(±a)]/K0

1,2(±a)} · 100%,

and Table 2 gives the relative errors for the normal and shear stresses

δ(σy) = max
x∈L1

|[σ∗y(x)− σ∗0y (x)]/σ∗0y (x)| · 100%, δ(τxy) = maxx∈L1 |[τ∗xy(x)− τ∗0xy(x)]/τ∗0xy(x)| · 100%,

where L1 = {−0.8 < x/a < 0.8} for the internal crack and L1 = {0.1 < x/a < 0.9} for the edge crack.
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TABLE 1
Relative Errors for the Mode I and II SIFs

Geometry
shown in Fig. 2

Ex/Ey Error N = 1 N = 2 N = 3 N = 4 N = 5

a 1 δ1(+a) −3.3 −2.5 0.2 0.1 0.1

1/25 δ1(+a) 3.3 −1.4 0.7 −0.3 0.3
1/5 δ1(+a) 5.1 −2.0 0.8 −0.2 0.2

b 1 δ1(+a) 8.1 −2.8 1.0 −0.4 −0.2
5 δ1(+a) 5.4 −2.2 0.9 −0.2 0.1
25 δ1(+a) 3.3 −1.5 0.6 −0.3 0.2

1 δ1(−a) 16.7 26.4 16,7 7.9 3.0

c
1 δ2(−a) −29.1 −12.3 −1.8 1.7 2.3
1 δ1(+a) 13.9 1.0 −3.5 2.2 −1.2
1 δ2(+a) 8.0 −8.6 3.7 −1.0 0.1

d 1 δ1(+a) 9.6 −3.1 1.0 −0.3 0.2

e
1 δ1(−a) −36.2 −19.7 −9.9 −4.5 −1.6
1 δ1(+a) 13.0 −7.5 4.3 −2.2 1.2

f 1 δ1(+a) −20.7 −14.5 4.7 4.5 4,0

TABLE 2
Relative Errors for the Normal and Shear Stresses

Geometry
shown in Fig. 2

Ex/Ey Error N = 1 N = 2 N = 3 N = 4 N = 5

1/25 δ(σy) 15.3 6.7 4.7 2.8 1.5
1/5 δ(σy) 28.1 9.3 4.3 1.4 0.7

b 1 δ(σy) 38.0 11.2 4.0 1.1 0.5
5 δ(σy) 29.3 9.6 4.2 1.5 0.8
25 δ(σy) 15.5 6.7 4.7 2.9 1.7

c
1 δ(σy) 30.4 27.1 12.0 6.9 3.3

e 1 δ(σy) 49.5 23.8 8.8 4.6 2.2

TABLE 3
Relative Errors for the Crack-Tip Coordinates

Geometry
shown in Fig. 2

Error M2 = 1 M2 = 2 M2 = 3 M2 = 4 M2 = 5

d δ(B) −0.8 4.1 −1.0 0.4 0,1

e
δ(A) 34.0 14.0 6.0 2.6 1.2
δ(B) −3.6 3.0 −1.4 1.0 −0.5
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For the case shown in Fig. 2b, the convergence of the solution (for the SIFs and stresses) was studied for
various degrees of anisotropy of the material. The calculations were performed for Ex/Ey = 1/25, 1/5, 1, 5, and 25,
Gxy = Gyx = 0.999 min (Ex, Ey)/[2(1 + max (νxy, νyx))], where max (νxy, νyx) = 0.33 and νxy/Ex = νyx/Ey. The
results show that two or five measurement points are sufficient to reach an error not exceeding 3–4% in determining
the SIF K1,2 and stresses σ∗y and τ∗xy in typical structural members for a wide range of the anisotropy of the material.
This indicates good convergence of the method.

The crack-tip coordinates determined by the method described in Sec. 4 are given in Table 3. The error for
the coordinates of the crack tips δ(A,B) = [|(A,B)/a|−1] ·100% was calculated for M2 = 1, . . . , 5 and N2 = M2 +1
for edge cracks and N2 = M2 + 2 for internal cracks (the points were located uniformly along the crack). For the
most complex case (the left crack tip in Fig. 2e), the error δ(A) did not exceed 1.2% for M2 = 5 and N2 = 7.

The numerical studies performed show that the methods proposed here are effective for the analysis of the
stress-strain state of cracked structures based on experimental data.
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